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Abstract. This paper analyzes compressible gaseous slip flow throutinea-dimensional straight uniform rectangular
microchannel, and reports a set of asymptotic solutioncdyparing the magnitudes of different forces in the congbées

gas flow, we obtain a proper criteria to estimate the ReynafdsMach numbers at the channel exit. We select two sets of
Mach and Reynolds numbers and obtain asymptotic analytalations of velocities and pressure distributions; firsten
velocity slip and non-slip boundary conditions are examinehe analytical results of pressure and velocities arepeoed

with numerical simulation results of direct simulation MerCarlo method and the results that are available in thetiiee.
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INTRODUCTION

Because of the wide applications of microchannels in maextro-mechanical systems(MEMS), it is desired to
investigate physical gaseous flows inside these channefettively design and optimize the channels.

In the literature, there is much work on this subject, ane lierthe literature review we concentrate on gaseous slip
flow inside a straight microchannel. Arkilic et al. [1] coraded an analytical and experimental investigation on gaseo
flow through long microchannels with slight rarefactioreyiderived a set of two-dimensional theoretical formula for
the nonlinear pressure, velocity profiles and mass flow ragaseous flow in microchannels. Chen [2, 3] studied
numerically gas flow in two-dimensional and three-dimenalanicrochannels. Cai et al. [4] presented a complete
set of first-order analytical solutions for compressible faw inside a two-dimensional or axis-symmetric uniform
microchannel with a relaxation of the isothermal assunmptiang and Wereley [5] reported that the pressure inside a
rectangular microchannelis nonlinear. Hsieh et al.[6)tarted an experimental and theoretical study of low Reysold
number compressible gas flow in a microchannel; his experiaheesults were found in good agreement with those
predicted by analytical solutions. Jain and Lin [7] presdmmtumerical results for three-dimensional nitrogen gagsflo
in microchannels with slip and non-slip boundary condisidBbert and Sparrow [8] performed a study for the flow in
rectangular and annular ducts for rarefied gas flow, and fthatdhe effect of slip is to flatten the velocity distributio
relative to that for continuum flow and the axial pressuredgnat is diminished under the slip conditions. Guo et
al.[9] conducted an experiment to study the flows in two- d&mde-dimensional microchannels. Qin et al. [10] studied
theoretically a two-dimensional steady subsonic gas fldlaeeiin a circular micropipe or in a planar microchannel
driven by pressure within the slip flow regime, high-ordeunbdary conditions of velocity slip and temperature jump
are adopted at the wall.

The objectives of the present work are to obtain a set of asyimsolutions of velocities and pressure for the
compressible gas flow inside a long, uniform, three-dinamai rectangular microchannel using the Navier-Stokes
equations and different boundary conditions.

PHYSICAL PROBLEM DESCRIPTION AND GOVERNING EQUATIONS

The microchannel under consideration has three-dimessiith a height oH, a length ofL and a width oW, the
origin is set at the center of the channel inlet and we chdusdldw direction as the x-axis. We consider two cases
of boundary conditions [2]: the non-slip boundary condiicaseu, = iy = Wy = 0, the first order slip boundary
conditions caseyy = 6,A (x)(%)w aty=+H/2 orz=+W/2 andvyy = wy, = O wheref, = 2;3’“, oy is the momentum
accommodation coefficiem,(x) is the local mean free path at specific cross section. We rizeribe flow properties




with the averaged values at the channel 4t00, To, Uo, No, andx, y, z coordinates with the channel length, height and
width. We can assume that the viscosity coefficiemnd the heat conductivityare constant, then the nondimensional
governing equations are:
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where A;, A, are ratios of hydrodynamic diameter to duct height and dudthyA; = D,/H and A, = Dp/W,
€ = Dp/L andDy, = 2WH/(W + H). The non-dimensional wall boundary conditionsyat +1/2 orz= +1/2 are:
Uy = Viw = Wy = 0, for the non slip velocity boundary condition;, = euKn(x)F(%)W, Vi = Wy = O for the first
order slip velocity boundary conditions. whelk@(x) = Kno/p(x) andF = A; or F = A, for they or z direction
correspondingly.

ASYMPTOTIC SOLUTIONS

A proper order estimation is needed to simplify the probl&ve. apply the X-momentum equation for the whole
channel, and obtain the following equation regarding edlach and Reynolds numbers:

O[(P—1)eM 2]~ O[ye] — O[y/R¢ ~ 0 (6)

whereP = p;/po is the pressure ratio.
We are interested in low speed gas flows, and we choose tleaviot two casesM ~ O(¢), Re~ O(g) and
M ~ O(e%/?), Re~ O(1) for our analysis. Becauseis symmetric about the centerline, we can consider only the
right-top quarter of the cross section to simplify the pesblwhere the boundary conditions along this Iinéﬁs: 0.
We define the same formats for the non-dimensional quastigen [4].

U=U;+EUp+E2Uz+..., V=EVo+E2g+..., W=EWs+ W3 +..., P=PpL+EP2+...,

7
P=p1+EPr+E2p3+..., N=nNi+En+E2n3+... ()

The solutions ofuy, v», andw, can be obtained by considering the leading terms in the x,dyzamomentum
equations. From the y- and z- momentum Eqns, the Ieadingite@ﬁ—lz) and it provides us a relation th%@ =0,

‘9" =0, i.e,pis a function of x only. The leading term in the x-momentum Eghn
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We denote the right hand side terma@éx) hereafter. The asymptotic solutionwf at a specific cross section can be
derived from Eqn.(8) with constant(x) for both cases of slip and non-slip conditions, and the &mstofv,(x,y, 2)
andws(x,y,z) can be derived by substituting the expansion formats [4 Bgn.(1) and using the condition that
p1 = p1. By collecting terms of ordeg?, we obtain:
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where the right hand side term is definedSaéx,y,z). From the above Eqn.(9) we can solve ferandw, after we
obtain the source term that containimgand applying the wall boundary conditions.



Asymptotic Solution with Non-Slip Velocity Boundary Conditions

The solution ol (X, Y, z) for the non-slip velocity boundary condition case can bawigtd from Eqn.(8) withui; =0
at the wall boundaries:
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whereA, = nm, Ay = A1 /Ay, the above result seems the same as the dimensional forindibsdn the book by
White,[12], however; (X) is not a constant here.

Utilizing the condition that mass flux is constant at all @esctions for a steady state, the following relation for the
pressure distribution is obtained:

- 1) cogAny) (10)

p1(X) = 1/P2+ (1 - P2)x (11)

Asymptotic Solutionswith the First order Velocity Slip Boundary Conditions

The u; solution can be derived from Eqn.(8) with the correspondingndary conditions for & y < 1/2 and
0<z<1/2:
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The solutions of/»(x,y, z) andwa(X, Y, z) for the slip case are obtained by solving the following etumt
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whereu; (X, Y, 2) is known k(x) = (— Ldp_ i) is a mathematical operator. It can be proved that the finabsgons

for theva(x,y,2), wao(X, Y, 2) solutions are:

Va(X,Y,2) = — Z Ym (Em(x) cosh{Azymz) + Zpm(X, z)) sin(ymy) (15)
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whereym = 2m, Az = /A4, Em(X), Zpm are:
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The pressure distribution is obtained from the above equatvith the following format:
QP BKnodm_ (20)
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whereQ; is a coefficient related to the mass flow rate, and
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VALIDATION AND RESULTS

We simulate a finite length uniform microchannel flow with thieect simulation Monte Carlo (DSMC) method. We
adopt one benchmark case which is similar to a test case thempaper, [4] by assuming oxygen gas flows through
a microchannel with a length of Jm, a width and a height of 0.5@m. The pressure ratio is 2.5, the outlet pressure
is 1 atm, the temperatures for the inlet, outlet, and wallB&@ Kelvin.

Figure (1) shows the normalized centerline pressure digtdns. It is clear that the analytical results with the sli
and no-slip velocity boundary conditions are in good agreatrwith the DSMC results.

Figure (2) shows the centerline U-velocity distributiofibe U-velocity increases along the X-axis for all cases,
and the DSMC results are close to the average value of the #ats of analytical results. The slip boundary case
has higher U-velocity than the no-slip case, since the glijmblary condition case provides less wall shear stress. We
should point out that the analytical centerline U-velodityery close to that from the round tube cross section case
with a tube diameter of 0.58m [4] and it is in good agreement with that for the rectangulaiss-section in [5].
Figure (3) shows the contours of U-velocity in the Z=0 plaaedlip boundary conditions with the DSMC results,
where the solid for the DSMC and dashed lines for slip casevésan see the results have the same trends with large
gradients at the channel exit. Figures (4) shows the cositoud-velocity at the middle statiox/L = 0.5, for slip
velocity boundary conditions case with the DSMC, the rasiidtve very close values.

CONCLUSION

We have presented a set of asymptotic solutions for the cessjirie gas flowfield inside a three-dimensional straight
microchannel with a uniform rectangular cross section. @yparing the different forces, we obtained a fundamental
relation, Eqn.(6), which links the Mach and Reynolds nurala¢the channel exit, the pressure rétjand the channel
geometry ratie. This relation provides a guideline to choose differentiégls and Mach number orders to simplify
the Navier-Stokes Equations. By utilizing the non-slip bdary conditions, the pressure expressions along the short
microchannel, which is nonlinear for the rectangular cseEsgion case, are obtained. This is different from the linea
pressure gradient assumption adopted in the classicalbasflow. The velocity distributioni; is the same as those
reported in the literature, but the nonlinear pressureildigion provides non-constant velocity profiles, while th
traditional Poiseuille flow provides us constant velocitgfpes at all channel sections. For the slip velocity bougda
condition case, we provided the full solutionswaf v», w,, and p; for first order velocity slip boundary conditions.
They can serve as the benchmark test cases for further stitie the pressure distribution, the format is different
from those obtained in the literature.
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FIGURE 1. Center line pressure along flow direction, W = H = 058, L=15 um, O,.
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FIGURE 2. Center line U-velocity along flow direction (m/s), W = H = 0.58n, L=15 um, O».
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FIGURE 3. U-velocity contours (m/s) in plane= 0, solid: DSMC, dashed: slip velocity B.C.s, W = H= 0.8, L = 15 um,
oxygen.
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FIGURE 4. U-velocity contours (m/s) at x/L=0.5, solid: DSMC, dashslib velocity B.C.s. W = H=0.53m, L = 15 um, O».



