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Abstract. This paper analyzes compressible gaseous slip flow through athree-dimensional straight uniform rectangular
microchannel, and reports a set of asymptotic solutions. Bycomparing the magnitudes of different forces in the compressible
gas flow, we obtain a proper criteria to estimate the Reynoldsand Mach numbers at the channel exit. We select two sets of
Mach and Reynolds numbers and obtain asymptotic analyticalsolutions of velocities and pressure distributions; first order
velocity slip and non-slip boundary conditions are examined. The analytical results of pressure and velocities are compared
with numerical simulation results of direct simulation Monte Carlo method and the results that are available in the literature.
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INTRODUCTION

Because of the wide applications of microchannels in micro-electro-mechanical systems(MEMS), it is desired to
investigate physical gaseous flows inside these channels toeffectively design and optimize the channels.

In the literature, there is much work on this subject, and here for the literature review we concentrate on gaseous slip
flow inside a straight microchannel. Arkilic et al. [1] conducted an analytical and experimental investigation on gaseous
flow through long microchannels with slight rarefaction; they derived a set of two-dimensional theoretical formula for
the nonlinear pressure, velocity profiles and mass flow rate of gaseous flow in microchannels. Chen [2, 3] studied
numerically gas flow in two-dimensional and three-dimensional microchannels. Cai et al. [4] presented a complete
set of first-order analytical solutions for compressible gas flow inside a two-dimensional or axis-symmetric uniform
microchannel with a relaxation of the isothermal assumption. Jang and Wereley [5] reported that the pressure inside a
rectangular microchannel is nonlinear. Hsieh et al.[6] conducted an experimental and theoretical study of low Reynolds
number compressible gas flow in a microchannel; his experimental results were found in good agreement with those
predicted by analytical solutions. Jain and Lin [7] presented numerical results for three-dimensional nitrogen gas flows
in microchannels with slip and non-slip boundary conditions. Ebert and Sparrow [8] performed a study for the flow in
rectangular and annular ducts for rarefied gas flow, and foundthat the effect of slip is to flatten the velocity distribution
relative to that for continuum flow and the axial pressure gradient is diminished under the slip conditions. Guo et
al.[9] conducted an experiment to study the flows in two- and three-dimensional microchannels. Qin et al. [10] studied
theoretically a two-dimensional steady subsonic gas flow either in a circular micropipe or in a planar microchannel
driven by pressure within the slip flow regime, high-order boundary conditions of velocity slip and temperature jump
are adopted at the wall.

The objectives of the present work are to obtain a set of asymptotic solutions of velocities and pressure for the
compressible gas flow inside a long, uniform, three-dimensional rectangular microchannel using the Navier-Stokes
equations and different boundary conditions.

PHYSICAL PROBLEM DESCRIPTION AND GOVERNING EQUATIONS

The microchannel under consideration has three-dimensions with a height ofH, a length ofL and a width ofW, the
origin is set at the center of the channel inlet and we choose the flow direction as the x-axis. We consider two cases
of boundary conditions [2]: the non-slip boundary conditions case,uw = vw = ww = 0, the first order slip boundary
conditions case,uw = θuλ (x)( ∂u

∂n)w aty=±H/2 orz=±W/2 andvw = ww = 0 whereθu = 2−σu
σu

, σu is the momentum
accommodation coefficient,λ (x) is the local mean free path at specific cross section. We normalize the flow properties



with the averaged values at the channel exit:po,ρo,To,Uo,no, andx,y,zcoordinates with the channel length, height and
width. We can assume that the viscosity coefficientµ and the heat conductivityk are constant, then the nondimensional
governing equations are:
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p = ρT = nT (5)

whereA1,A2 are ratios of hydrodynamic diameter to duct height and duct width, A1 = Dh/H and A2 = Dh/W,
ε = Dh/L andDh = 2WH/(W + H). The non-dimensional wall boundary conditions aty = ±1/2 or z= ±1/2 are:
uw = vw = ww = 0, for the non slip velocity boundary condition;uw = θuKn(x)F( ∂u

∂n)w, vw = ww = 0 for the first
order slip velocity boundary conditions. whereKn(x) = Kno/ρ(x) andF = A1 or F = A2 for the y or z direction
correspondingly.

ASYMPTOTIC SOLUTIONS

A proper order estimation is needed to simplify the problem.We apply the X-momentum equation for the whole
channel, and obtain the following equation regarding outlet Mach and Reynolds numbers:

O[(P−1)εM−2]−O[γε]−O[γ/Re]∼ 0 (6)

whereP = pi/po is the pressure ratio.
We are interested in low speed gas flows, and we choose the following two cases:M ∼ O(ε), Re∼ O(ε) and

M ∼ O(ε1/2), Re∼ O(1) for our analysis. Becauseu is symmetric about the centerline, we can consider only the
right-top quarter of the cross section to simplify the problem where the boundary conditions along this line is∂u

∂n = 0.
We define the same formats for the non-dimensional quantities as in [4].

u = u1 + εu2+ ε2u3 + ..., v = εv2 + ε2v3 + ..., w = εw2 + ε2w3 + ..., p = p1 + ε p2+ ...,
ρ = ρ1 + ερ2+ ε2ρ3 + ..., n = n1 + εn2+ ε2n3+ ...

(7)

The solutions ofu1, v2, andw2 can be obtained by considering the leading terms in the x, y and z-momentum
equations. From the y- and z- momentum Eqns, the leading termis O( 1

ε2 ) and it provides us a relation that∂ p
∂y = 0,

∂ p
∂z = 0, i.e,p is a function of x only. The leading term in the x-momentum Eqn.(2):
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We denote the right hand side term asc1(x) hereafter. The asymptotic solution ofu1 at a specific cross section can be
derived from Eqn.(8) with constantc1(x) for both cases of slip and non-slip conditions, and the solutions ofv2(x,y,z)
and w2(x,y,z) can be derived by substituting the expansion formats [4] into Eqn.(1) and using the condition that
p1 = ρ1. By collecting terms of orderε1, we obtain:
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where the right hand side term is defined asS1(x,y,z). From the above Eqn.(9) we can solve forv2 andw2 after we
obtain the source term that containingu1 and applying the wall boundary conditions.



Asymptotic Solution with Non-Slip Velocity Boundary Conditions

The solution ofu1(x,y,z) for the non-slip velocity boundary condition case can be obtained from Eqn.(8) withu1 = 0
at the wall boundaries:

u1(x,y,z) =
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whereλn = nπ , A4 = A1/A2, the above result seems the same as the dimensional format solution in the book by
White,[12], howeverc1(x) is not a constant here.

Utilizing the condition that mass flux is constant at all cross sections for a steady state, the following relation for the
pressure distribution is obtained:

p1(x) =
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Asymptotic Solutions with the First order Velocity Slip Boundary Conditions

The u1 solution can be derived from Eqn.(8) with the correspondingboundary conditions for 0≤ y ≤ 1/2 and
0≤ z≤ 1/2:
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The solutions ofv2(x,y,z) andw2(x,y,z) for the slip case are obtained by solving the following equation:
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for thev2(x,y,z), w2(x,y,z) solutions are:
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The pressure distribution is obtained from the above equation, with the following format:
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whereQ2 is a coefficient related to the mass flow rate, and
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the solution to Eqn. (20) is:
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VALIDATION AND RESULTS

We simulate a finite length uniform microchannel flow with thedirect simulation Monte Carlo (DSMC) method. We
adopt one benchmark case which is similar to a test case in another paper, [4] by assuming oxygen gas flows through
a microchannel with a length of 15µm, a width and a height of 0.53µm. The pressure ratio is 2.5, the outlet pressure
is 1 atm, the temperatures for the inlet, outlet, and wall are300 Kelvin.

Figure (1) shows the normalized centerline pressure distributions. It is clear that the analytical results with the slip
and no-slip velocity boundary conditions are in good agreement with the DSMC results.

Figure (2) shows the centerline U-velocity distributions.The U-velocity increases along the X-axis for all cases,
and the DSMC results are close to the average value of the three sets of analytical results. The slip boundary case
has higher U-velocity than the no-slip case, since the slip boundary condition case provides less wall shear stress. We
should point out that the analytical centerline U-velocityis very close to that from the round tube cross section case
with a tube diameter of 0.53µm [4] and it is in good agreement with that for the rectangular cross-section in [5].
Figure (3) shows the contours of U-velocity in the Z=0 plane for slip boundary conditions with the DSMC results,
where the solid for the DSMC and dashed lines for slip case. Aswe can see the results have the same trends with large
gradients at the channel exit. Figures (4) shows the contours of U-velocity at the middle station,x/L = 0.5, for slip
velocity boundary conditions case with the DSMC, the results have very close values.

CONCLUSION

We have presented a set of asymptotic solutions for the compressible gas flowfield inside a three-dimensional straight
microchannel with a uniform rectangular cross section. By comparing the different forces, we obtained a fundamental
relation, Eqn.(6), which links the Mach and Reynolds numbers at the channel exit, the pressure ratioP, and the channel
geometry ratioε. This relation provides a guideline to choose different Reynolds and Mach number orders to simplify
the Navier-Stokes Equations. By utilizing the non-slip boundary conditions, the pressure expressions along the short
microchannel, which is nonlinear for the rectangular crosssection case, are obtained. This is different from the linear
pressure gradient assumption adopted in the classical Poiseuille flow. The velocity distributionu1 is the same as those
reported in the literature, but the nonlinear pressure distribution provides non-constant velocity profiles, while the
traditional Poiseuille flow provides us constant velocity profiles at all channel sections. For the slip velocity boundary
condition case, we provided the full solutions ofu1, v2, w2, andp1 for first order velocity slip boundary conditions.
They can serve as the benchmark test cases for further studies. For the pressure distribution, the format is different
from those obtained in the literature.
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FIGURE 1. Center line pressure along flow direction, W = H = 0.53µm, L=15 µm, O2.
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